Israel hat der Dürre den Kampf angesagt. Fünf Meerwasserentsalzungsanlagen generieren pro Jahr um die 600 Millionen Kubikmeter Süßwasser, etwa 70 Prozent des Verbrauchs der privaten Haushalte. Weil die gigantischen Anlagen nicht flexibel reguliert werden können, hat das Land inzwischen in Zeiten geringeren Bedarfs und bei Wartungsarbeiten an den Leitungsnetzen zu viel von dem kostbaren Nass. „Man braucht einen Zwischenspeicher“, sagt Christoph Schüth, Professor für Angewandte Geowissenschaften an der TU Darmstadt. Dafür wird das Wasser seit einiger Zeit in Aquifere eingespeist, grundwasserführende Bodenschichten, und bleibt dort, bis es wieder entnommen wird. Das einfache Prinzip hat allerdings einen Nachteil: Das entsalzte Wasser ist chloriert. Sickert es durchs Erdreich, reagiert das Chlor mit organischen Stoffen im Boden und bildet giftige Verbindungen wie zum Beispiel Chloroform.
Im deutsch-israelischen Verbundprojekt MAR-DSW wollen Schüth, Dr. Kaori Sakaguchi-Söder und der Doktorand Behane Abrha herausfinden, was mit diesen Trihalomethanen im Wasser passiert.
Sie nutzen dafür das Verfahren der Isotopen-Analyse, die Sakaguchi-Söder im Rahmen ihrer Doktorarbeit weiter entwickelte und für die Analysen in Israel maßschneiderte. „Die Methode ist eine Spezialität der TU, wir können die Isotopie aller Elemente in den Trihalomethanen ermitteln“, sagt Sakaguchi-Söder. Dafür werden Wasserproben an verschiedenen Stellen des Aquifers genommen und in einen Gaschromatographen eingebracht, der die enthaltenen Moleküle „zerschießt“. Anschließend können die Forschenden die Isotopie der Bruchstücke untersuchen. Das ist zum Beispiel bedeutsam, weil sich Mikroben beim Abbau der schädlichen Stoffe zuerst über leichtere Isotope hermachen. Sind überwiegend schwere Isotope in der Probe, zeigt das, dass der Abbau der gefährlichen Nebenprodukte schon weit fortgeschritten ist. „Mit der Isotopenanalyse kann man Aussagen treffen, ob, wie schnell und an welchen Stellen der Bodenpassage ein Stoff abgebaut wurde“, erklärt Schüth.
Um die gewonnenen Messdaten korrekt interpretieren zu können, simuliert das Team auch den mikrobiologischen Abbau unter der Erde im Labor. Zur Halbzeit des Forschungsprojektes steht das Verfahren: „Die Methode ist bereit für den Einsatz“, sagt Sakaguchi-Söder. Im April werden in Israel Proben gezogen, die dann in Darmstadt analysiert werden. „Die Daten fließen in ein hydrogeologisches Standortmodell“, sagt Schüth. „Wir wissen dann ganz genau, was im Untergrund passiert.“
Das Untersuchungsverfahren, das an der TU entwickelt wurde, könne weltweit zum Einsatz kommen, überall, wo Wasser in Aquiferen gelagert werde, sagt Schüth. Die Belastung mit Trihalomethanen kann je nach Bodenbeschaffenheit von Standort zu Standort unterschiedlich ausfallen, aber dank MAR-DSW verstehen Wissenschaft und Wasserwirtschaft die grundlegenden Prozesse, die bei unterschiedlichen Rahmenbedingungen der Einspeisung zum Tragen kommen. „Um der zunehmenden Wasserknappheit mit Entsalzung begegnen zu können, ist entscheidend, dass künstliche Grundwasseranreicherung als sicheres und nachhaltiges Instrument etabliert wird“, sagt Schüth. „Dazu leisten wir einen Beitrag.“
Hintergrund
Das Verbundprojekt „Künstliche Grundwasseranreicherung als nachhaltige Lösung zur Speicherung von entsalztem Meerwasser“ (MAR-DSW) baut auf dem Projekt MARSOL auf, das die TU koordinierte. MAR-DSW wird im Rahmen der deutsch-israelischen Kooperation in der Wassertechnologieforschung vom Bundesministerium für Bildung und Forschung (BMBF) sowie vom israelischen Wissenschaftsministerium (MOST) gefördert (Förderkennzeichen 02WIL1386). Es startete am 1. Juni 2016, hat eine Laufzeit von drei Jahren und ein Volumen von 250.000 Euro. Israelische Forschungspartner sind die Ben-Gurion University, das Volcani Center der Agricultural Research Organization sowie der Wasserversorger Mekorot.