Der Aufprall fallender Tropfen auf Blätter von Salvinia molesta wurde von einem Forschungsteam der Universität Tübingen beobachtet mithilfe von Hochgeschwindigkeitskameras .
Der tropische Schwimmfarn Salvinia molesta hat ausgeklügelte Strukturen entwickelt, um auch bei starken Regenfällen das Wasser zügig von seinen Blättern abperlen zu lassen. Dadurch werden die an der Wasseroberfläche schwimmenden Blätter entlastet, aber vor allem auch die Spaltöffnungen für den Luftaustausch frei gehalten. So kann der Farn ungehindert Kohlendioxid aufnehmen für die Fotosynthese. Das wurde in einem interdisziplinären Kooperationsprojekt zwischen Professor James Nebelsick und Dr. Dr. Wilfried Konrad aus den Geowissenschaften der Universität Tübingen und Dr. Anita Roth-Nebelsick vom Staatlichen Museum für Naturkunde Stuttgart bei Experimenten mit künst-lichem Regen festgestellt.
Das Team verfolgte den Weg auf die Blätter aufklatschender Wassertropfen mit Hochgeschwindigkeitskameras. Die effizient an Regenfälle angepassten Blattstrukturen könnten zum starken Wachstum und der schnellen Ausbreitung des Schwimmfarns beitragen. Fern seiner Heimat Brasilien gilt er vielerorts als gefährliche invasive Pflanze, die andere Arten verdrängt. Die neue Studie wurde in der Fachzeitschrift Journal of the Royal Society Interface veröffentlicht.
Salvinia molesta treibt, wie alle Schwimmfarne, frei an der Wasseroberfläche. Von jedem dreiblättrigen Quirl liegen zwei Schwimmblätter oben, ein wurzelartiges Blatt streckt er nach unten. Schnell bildet er dichte und dicke Matten an der Wasseroberfläche. Er stammt ursprünglich aus feuchttropischen Regionen in Brasilien, wo er regelmäßig starken Regenfällen ausgesetzt ist. Die Schwimmblätter sind an der Oberseite von stark wasserabweisenden Härchen bedeckt, deren Struktur an winzige Schneebesen erinnert.
„Diese Trichome sorgen dafür, dass die untergetauchten Blätter nicht mit Wasser benetzt werden. Das erreichen jedoch andere Wasserpflanzen mit deutlich weniger aufwendigen Strukturen. Wir haben uns daher gefragt, welchen Nutzen der Farn von den kleinen Schneebesen hat.“
— Wilfried Konrad
Experimente simulieren Regenfall
Exemplare von Salvinia molesta erhielt das Forschungsteam aus den Botanischen Gärten in Tübingen und der Wilhelma in Stuttgart. Es ließ im Experiment kleinere und größere Wassertropfen aus unterschiedlicher Höhe auf die Blätter des Schwimmfarns platschen, die in einem Teilexperiment fixiert wurden. „Insgesamt schüttelten die Blätter den größten Teil des künstlichen Regens schnell von der Oberfläche ab. Die Kamerabilder zeigen, dass die Trichome elastisch auf die Bewegungsenergie der fallenden Tropfen reagieren“, sagt Konrad. Wichtiger noch beim Abschütteln des Wassers sei aber die Elastizität der Blätter insgesamt. Das habe der Vergleich der Regenexperimente von frei treibenden mit fixierten Blättern ergeben. „Als die Blätter befestigt waren, dauerte es viel länger, bis ihre Oberfläche wieder wasserfrei war.“
Die Forscherinnen und Forscher beobachteten, wie Wassertropfen an den Blättern abprallten, etwa zurückfederten und eine pfannkuchenähnliche Form annahmen oder in kleinere Tröpfchen zerteilt wurden. „Vor allem bei den Experimenten mit dicken Wassertropfen, die aus großer Höhe auf die Farnblätter fielen, stellten wir fest, dass unter den kleinen Schneebesen immer etwas Restwasser zurückblieb“, sagt der Physiker. „Erstaunlicherweise schienen die Trichome das schnelle Abperlen des Wassers eher zu verhindern.“
Wasserabweisende Strukturen
Detailbeobachtungen ergaben jedoch, dass sie sehr effizient die Blattbasis von Wasser freihielten. „Der Energiezustand eines Tropfens ist auf den Trichomen günstiger als zwischen ihnen. Das liegt an der wasserabweisenden Wirkung der Schneebesen“, erklärt Konrad. Wenn nun ein Wassertropfen über die Trichome des Blatts rolle, sauge er durch seine starken Oberflächenkräfte das zwischen den Trichomen gefangene Restwasser förmlich auf. „So bleiben die Spaltöffnungen an der Blattbasis des Schwimmfarns, die zudem mit wasserabweisenden Nanokristallen aus Wachs besetzt ist, frei von Wasser. Dort findet der für die Pflanze lebenswichtige Gasaustausch statt.“ Möglicherweise sei dies ein entscheidender Faktor für die hohe Produktivität des Farns Salvinia molesta, der seine Blattmas-se unter günstigen Bedingungen innerhalb weniger Tage verdoppeln kann.